Security

The DROWN Attack

Breaking TLS using SSLv2
Saal 2
Sebastian Schinzel
We present DROWN, a novel cross-protocol attack on TLS that uses a server supporting SSLv2 as an oracle to decrypt modern TLS connections. Using Internet-wide scans, we find that 33% of all HTTPS servers are vulnerable to this protocol-level attack.
We present DROWN, a novel cross-protocol attack on TLS that uses a server supporting SSLv2 as an oracle to decrypt modern TLS connections. We introduce two versions of the attack. The more general form exploits multiple unnoticed protocol flaws in SSLv2 to develop a new and stronger variant of the Bleichenbacher RSA padding-oracle attack. The victim client never initiates SSLv2 connections. We implemented the attack and can decrypt a TLS 1.2 handshake using 2048-bit RSA in under 8 hours, at a cost of $440 on Amazon EC2. Using Internet-wide scans, we find that 33% of all HTTPS servers and 22% of those with browser-trusted certificates are vulnerable to this protocol-level attack due to widespread key and certificate reuse. For an even cheaper attack, we apply our new techniques together with a newly discovered vulnerability in OpenSSL that was present in releases from 1998 to early 2015. Given an unpatched SSLv2 server to use as an oracle, we can decrypt a TLS ciphertext in one minute on a single CPU—fast enough to enable man-in-the-middle attacks against modern browsers. We find that 26% of HTTPS servers are vulnerable to this attack. This talk gives an overview on the DROWN vulnerability for the hacker community with some background information that didn’t make it to the paper.

Additional information

Type lecture
Language English

More sessions

12/27/16
Security
Martin Schmiedecker
Saal 6
Certificate transparency - what is it, and what can be done with it?
12/27/16
Security
Saal G
Hardware is often considered as an abstract layer that behaves correctly, just executing instructions and outputting a result. However, the internal state of the hardware leaks information about the programs that are executing. In this talk, we focus on how to extract information from the execution of simple x86 instructions that do not require any privileges. Beyond classical cache-based side-channel attacks, we demonstrate how to perform cache attacks without a single memory access, as well as ...
12/27/16
Security
Yannay Livneh
Saal 6
PHP-7 is a new version of the most prevalent server-side language in use today. Like previous version, this version is also vulnerable to memory corruptions. However, the language has gone through extensive changes and none of previous exploitation techniques are relevant. In this talk, we explore the new memory internals of the language from exploiters and vulnerability researchers point of view. We will explain newly found vulnerabilities in the 'unserialize' mechanism of the language and ...
12/27/16
Security
Chris Gerlinsky
Saal 2
Follow the steps taken to crack a conditional access and scrambling system used in millions of TV set-top-boxes across North America. From circuit board to chemical decapsulation, optical ROM extraction, glitching, and reverse engineering custom hardware cryptographic features. This talk describes the techniques used to breach the security of satellite and cable TV systems that have remained secure after 15+ years in use.
12/27/16
Security
Trammell Hudson
Saal 1
Heads is an open source custom firmware and OS configuration for laptops and servers that aims to provide slightly better physical security and protection for data on the system. Unlike Tails, which aims to be a stateless OS that leaves no trace on the computer of its presence, Heads is intended for the case where you need to store data and state on the computer. It targets specific models of commodity hardware and takes advantage of lessons learned from several years of vulnerability research. ...
12/27/16
Security
Mathy Vanhoef
Saal 6
We analyze the generation and management of WPA2 group keys. These keys protect broadcast and multicast Wi-Fi traffic. We discovered several issues and illustrate their importance by decrypting all group (and unicast) traffic of a typical Wi-Fi network.
12/27/16
Security
Vincent Haupert
Saal 1
FinTechs increasingly cut the ground from under long-established banks’ feet. With a "Mobile First" strategy, many set their sights on bringing all financial tasks—checking the account balance, making transactions, arranging investments, and ordering an overdraft—on your smartphone. In a business area that was once entirely committed to security, Fintechs make a hip design and outstanding user experience their one and only priority. Even though this strategy is rewarded by rapidly ...