Hardware-Aided Trusted Computing

Secure Multi-Party Applications in Open Enclave

D.hardware.trusted
Christoph M. Wintersteiger
Existing attestation schemes require pre-signed enclave images and provide few means of including runtime-dependent configuration data (like report data, enclave held data, configid). In multi-party settings in which the parties may not always fully trust each other, attestation of multiple pieces of code or data images via these means is cumbersome and inefficient. For example, consider the case of a secure cloud service running a JavaScript interpreter, which interprets a third-party script, in which case both, the interpreter and the script, can interfere with each other's attestation evidence as they share an address space. Similarly, a group of users may want to compute a shared result over all of their combined data, but without sharing their data with each other. Attestation in such scenarios is greatly simplified by a technique called Extended Enclave Initialization Data (EEID), which provides a secure and convenient means to combine all required attestation evidence, and to automatically re-sign images (with a well known service key) during enclave startup to ensure that all of the code and data is loaded and attested appropriately. An added benefit is that even single-party applications can use this technique to automatically re-sign enclave images with modified configuration settings (like memory size and thread count), independent of, or in addition to, underlying TEE support for configuration changes. EEID is currently available as an experimental feature for SGX enclaves in the Open Enclave SDK and it is used in multiple prototype services at Microsoft.

Additional information

Type devroom

More sessions

2/6/21
Hardware-Aided Trusted Computing
Jo Van Bulck
D.hardware.trusted
A brief introduction to the room and to the sessions.
2/6/21
Hardware-Aided Trusted Computing
D.hardware.trusted
If you’re designing a project where security is uppermost, but you want to make it easy to use and compatible with multiple platforms (existing and future), what principles should you follow, and how do they translate into an architecture and actual code. We’ll present the 10 security design principles of the Enarx project, and discuss why they led us to where we are today: a Rust-based open source project with a WebAssembly run-time.
2/6/21
Hardware-Aided Trusted Computing
Dominic Mulligan
D.hardware.trusted
In this presentation we will introduce Veracruz, a project recently adopted by the Confidential Compute Consortium, exploring how efficient, collaborative computations between mutually distrusting parties can be developed using a mixture of hardware- and software strong isolation mechanisms. Veracruz uses Arm TrustZone, Intel SGX, AWS Nitro Enclaves, or the high-assurance seL4 microvisor, to provide a "neutral ground" within which a collaborative computation takes place, shielded from prying or ...
2/6/21
Hardware-Aided Trusted Computing
Dmitrii Kuvaiskii
D.hardware.trusted
Graphene is a lightweight library OS, designed to run a single Linux application in an isolated environment. Currently, Graphene runs on Linux and Intel SGX enclaves on Linux platforms. With Intel SGX support, Graphene can secure a critical application in a hardware-encrypted memory region and protect the application from a malicious system stack with minimal porting effort. This talk will discuss the design, implementation, features, lessons learned, and the current status of the project. The ...
2/6/21
Hardware-Aided Trusted Computing
D.hardware.trusted
Enclave technologies such as SGX generally have a relatively high context-switching cost. This is particularly noticeable when doing (network) I/O. In this talk we'll present the first non-LibOS implementation of an asynchronous I/O model for SGX. This gives you a language-native async I/O programming experience in Rust, outperforming any other way to build SGX network services.
2/6/21
Hardware-Aided Trusted Computing
D.hardware.trusted
In this talk, we present an open-source framework to develop heterogeneous, distributed enclaved applications. The main feature of our framework is to provide a high level of abstraction over the platform-specific TEE layer and over the secure communication between different modules, leaving to a developer only the task to write the application’s logic. We provide a notion of event-driven programming to develop distributed enclave applications in Rust and C for heterogeneous TEEs, including ...
2/6/21
Hardware-Aided Trusted Computing
ZITAI CHEN
D.hardware.trusted
Previous work such as Plundervolt has shown that software-based undervolting can induce faults into Intel SGX enclaves and break their security guarantees. However, Intel has addressed this issue with microcode updates. We later discovered that there is a physical connection on the motherboard which allows us to control the voltage and conduct fault injection. In this talk, we will present a low-cost device: Voltpillager, which use this physical connection to break the guarantees provided by SGX ...