Session
Fahrplan 34C3
Security

BootStomp: On the Security of Bootloaders in Mobile Devices

Saal Dijkstra
Audrey Dutcher
In our paper we present a novel tool called BootStomp able to identify security vulnerabilities in Android bootloaders (such as memory corruptions) as well as unlocking vulnerabilities. During its evaluation, BootStomp discovered 6 previously unknown vulnerabilities across 4 different bootloaders. Finally BootStomp has been open-sourced to help the security community.

Modern mobile bootloaders play an important role in both the function and the security of the device. They help ensure the Chain of Trust (CoT), where each stage of the boot process verifies the integrity and origin of the following stage before executing it. This process, in theory, should be immune even to attackers gaining full control over the operating system, and should prevent persistent compromise of a device’s CoT. However, not only do these bootloaders necessarily need to take untrusted input from an attacker in control of the OS in the process of performing their function, but also many of their verification steps can be disabled (“unlocked”) to allow for development and user customization. Applying traditional analyses on bootloaders is problematic, as hardware dependencies hinder dynamic analysis, and the size, complexity, and opacity of the code involved preclude the usage of many previous techniques.

In this paper, we explore vulnerabilities in both the design and implementation of mobile bootloaders. We examine bootloaders from four popular manufacturers, and discuss the standards and design principles that they strive to achieve. We then propose BootStomp , a multi-tag taint analysis resulting from a novel combination of static analyses and dynamic symbolic execution, designed to locate problematic areas where input from an attacker in control of the OS can compromise the bootloader’s execution, or its security features. Using our tool, we find six previously-unknown vulnerabilities (of which five have been confirmed by the respective vendors), as well as rediscover one that had been previously reported. Some of these vulnerabilities would allow an attacker to execute arbitrary code as part of the bootloader (thus compromising the entire chain of trust), or to perform permanent denial-of-service attacks. Our tool also identified two bootloader vulnerabilities that can be leveraged by an attacker with root privileges on the OS to unlock the device and break the CoT. We conclude by proposing simple mitigation steps that can be implemented by manufacturers to safeguard the bootloader and OS from all of the discovered attacks, using already-deployed hardware features.

Additional information

Type lecture
Language English

More sessions

12/27/17
Security
oranav
Saal Dijkstra
How I hacked Sasmung eMMC chips: from an indication that they have a firmware - up until code execution ability on the chip itself, relevant to a countless number of devices. It all started when Samsung Galaxy S3 devices started dying due to a bug in their eMMC firmware. I will cover how I figured out there's a firmware inside the chip, how I obtained it, and my journey to gaining code execution on the chip itself — up until the point in which I could grab a bricked Galaxy S3, and fix it ...
12/27/17
Security
Mathias Dalheimer
Saal Adams
Wir retten das Klima mit Elektroautos — und bauen die Ladeinfrastruktur massiv aus. Leider werden dabei auch Schwachstellen auf allen Ebenen sichtbar: Von fehlender Manipulationssicherheit der Ladesäulen bis hin zu inhärent unsicheren Zahlungsprotokollen und kopierbaren Zahlkarten. Ladesäulenhersteller und Ladenetzbetreiber lassen ihre Kunden im Regen stehen — geht das schnelle Wachstum des Marktanteils zu Lasten der Kundensicherheit?
12/27/17
Security
Filippo Valsorda
Saal Dijkstra
The Go implementation of the P-256 elliptic curve had a small bug due to a misplaced carry bit affecting less than 0.00000003% of field subtraction operations. We show how to build a full practical key recovery attack on top of it, capable of targeting JSON Web Encryption.
12/27/17
Security
Artem Kondratenko
Saal Clarke
Year 2017 was rich in vulnerabilities discovered for Cisco networking devices. At least 3 vulnerabilities leading to a remote code execution were disclosed. This talk will give an insight on exploit development process for Cisco IOS for two of the mentioned critical vulnerabilities. Both lead to a full takeover of the target device. Both PowerPC and MIPS architectures will be covered. The presentation will feature an SNMP server exploitation demo.
12/27/17
Security
Saal Borg
Positive Technologies researchers Maxim Goryachy and Mark Ermolov have discovered a vulnerability that allows running unsigned code. The vulnerability can be used to activate JTAG debugging for the Intel Management Engine processor core. When combined with DCI, this allows debugging ME via USB.
12/27/17
Security
argp
Saal Clarke
This talk presents the technical details and the process of reverse engineering and re-implementation of the evasi0n7 jailbreak's main kernel exploit. This work was done in late 2013, early 2014 (hence the "archaeology" in the title), however, it will provide insight into the kernel debugging setup for iOS devices (iDevices), the encountered difficulties and how they were overcome, all of which can be useful for current iOS kernel vulnerability research.
12/27/17
Security
Saal Dijkstra
Do you want to learn how modern binary code obfuscation and deobfuscation works? Did you ever encounter road-blocks where well-known deobfuscation techniques do not work? Do you want to see a novel deobfuscation method that learns the code's behavior without analyzing the code itself? Then come to our talk and we give you a step-by-step guide.