Hardware & Making

How to Design Highly Reliable Digital Electronics

There's a variety of places - on Earth and beyond - that pose challenging conditions to the ever-shrinking digital circuits of today. Making those tiny transistors work reliably when bombarded with charged particles in the vacuum of space, in the underground tunnels of CERN or in your local hospital's X-ray machine is not an easy feat. This talk is going to shed some light on what can be done to keep particles from messing up your ones and zeroes, how errors in digital circuits can be detected and corrected, and how you may even re-purpose those flipped bits in your RAM as a particle detector.
This talk will introduce the audience to the class of problems that digital circuits are faced with in challenging radiation environments. Such environments include satellites in space, the electronics inside particle accelerators and also a variety of medical applications. After giving an overview of the various effects that may cause malfunctions, different techniques for detection and mitigation of such effects are presented. Some of these techniques concern the transistor-level design of digital circuits, others include triple modular redundancy (TMR) and correction codes. Some open source software solutions that aid in the design and verification of circuits hardened against such problems are presented, and of course a 'lessons learned' from our experiences in the field of particle detector electronics will be shared.

Additional information

Type lecture
Language English

More sessions

12/27/19
Hardware & Making
Clarke
While open source is necessary for trustable hardware, it is far from sufficient. This is because “hashing” hardware – verifying its construction down to the transistor level – is typically a destructive process, so trust in hardware is a massive time-of-check/time-of-use (TOCTOU) problem. This talk helps us understand the nature of the TOCTOU problem by providing a brief overview of the supply chain security problem and various classes of hardware implants. We then shift gears to talk ...
12/27/19
Hardware & Making
Matt Evans
Dijkstra
This talk will cover everything about the Acorn Archimedes, a British computer first released in 1987 and (slightly) famous for being the genesis of the original ARM processor.
12/27/19
Hardware & Making
Sebastian Staacks
Eliza
Modern smartphones offer a whole range of sensors like magnetometers, accelerometers or gyroscopes. The open source app "phyphox", developed at the RWTH Aachen University, repurposes these sensors as measuring instruments in physics education.
12/27/19
Hardware & Making
chipforge
Eliza
(en) We make Standard Cells for LibreSilicon available, which are open source and feasible. And we like to talk and demonstrate what we are doing. (de) Wir machen Standardzellen für LibreSilicon verfügbar, welche Open Source und nutzbar sind. Wir möchten darüber sprechen und vorführen, was wir tun.
12/27/19
Hardware & Making
Phil
Dijkstra
Es soll grundlegend erklärt werden, nach welchen Kriterien Medizinprodukte entwickelt werden. Dazu werden die wichtigsten Regularien (Gesetze, Normen, ...) vorgestellt die von den Medizinprodukteherstellern eingehalten werden müssen. Diese regeln, was die Hersteller umsetzen müssen (und was nicht). Hier wird auch die Frage beantwortet, warum beispielsweise die Apple-Watch (oder genauer gesagt nur zwei Apps) ein Medizinprodukt sind aber die card10 nicht.
12/27/19
Hardware & Making
LaForge
Ada
Billions of subscribers use SIM cards in their phones. Yet, outside a relatively small circle, information about SIM card technology is not widely known. This talk aims to be an in-depth technical overview.
12/28/19
Hardware & Making
Thomas Roth
Dijkstra
Most modern embedded devices have something to protect: Whether it's cryptographic keys for your bitcoins, the password to your WiFi, or the integrity of the engine-control unit code for your car. To protect these devices, vendors often utilise the latest processors with the newest security features: From read-out protections, crypto storage, secure-boot up to TrustZone-M on the latest ARM processors. In this talk, we break these features: We show how it is possible to bypass the security ...