Session
Fahrplan - Hauptprogramm 36C3
Science

Climate Modelling

The Science Behind Climate Reports
Dijkstra
karlabyrinth
When climate activists say you should listen to the science they usually refer to reports by the Intergovernmental Panel on Climate Change (IPCC). The IPCC is an Intergovernmental organization (IGO) providing an objective summary of scienctific results regarding climate change, its impacts and its reasons. The simulation of future climate is one fundamental pillar within climate research. But what is behind it? How does the science sector look like? How do we gain these insights, what does it mean?

This lecture aims at answering these questions. In particular, it provides an overview about some basic nomenclature for a better understanding of what climate modelling is about.

The following topics will be addressed:

Who does climate modelling?

Which institutes, infrastructures, universities, initiatives are behind it and which are the conferences climate scientists go to. What background do climate scientists have?

What is the difference between climate projections and weather predictions? Why is it called a climate projection and not climate prediction? While climate scientists are not able to predict weather at a specific date in a decade, why does it still make sense to propose general trends under certain conditions?

What is a climate model, what is an impact model and what is the difference between these? What are components and features of the different kind of models? Here, some examples will be shortly presented (e.g.atmosphere, ocean, land, sea ice).

Quite a few models are open source and freely accessible. If there is time I will shortly show you how you could install an impact model (example mHM) on your local PC. How accessible is the data used for the projections for the IPCC reports?

Overview over the used infrastructure (for example JUWELS, a supercomputer in Jülich), programming languages, software components

Additional information

Type lecture
Language English

More sessions

12/27/19
Science
Sebastian Pischel
Clarke
Wir verlassen uns in unserem Alltag permanent auf die Verfügbarkeit von elektrischer Energie. Aber wenn wir vom dauerhaften Betrieb von Kraftwerke, die fossile Energieträger verbrennen, wie stellen wir die Versorgung sicher, wenn nachts kein Wind weht? Elektrolyse oder Pumpspeicherkraftwerk? Superkondensatoren oder mechanische Speicher? Was geht heute überhaupt schon? Ähnlich unklar ist die Zukunft der Mobilität, wenn Verbrennungsmotoren von unseren Straßen verschwinden sollen. ...
12/27/19
Science
Clarke
The Large Hadron Collider (LHC) is the biggest particle accelerator on Earth. It was built to study matter in more detail than ever before and prove physical theories like the Standard Model of Particle Physics. This talk will focus on the engineering aspects of LHC. How was it built? What makes it tick? Which technologies are needed to create a such powerful machine? This talk will take you on a journey to explore how the most complex machine ever built by humans works.
12/27/19
Science
Dijkstra
Making climate predictions is extremely difficult because climate models cannot simulate every cloud particle in the atmosphere and every wave in the ocean, and the model has no idea what humans will do in the future. I will discuss how we are using the Julia programming language and GPUs in our attempt to build a fast and user-friendly climate model, and improve the accuracy of climate predictions by learning the small-scale physics from observations.
12/27/19
Science
Bernhard Stoevesandt
Dijkstra
This talk is to show the current state of the discussion on climate change and the necessary and possible changes from a scientific perpesctive. It is to give some typical relevant answers and to foster the resiliance against climate sceptic questioning. This is one of the main tasks the scientist for future are trying to tackle.
12/27/19
Science
Martin Hillenbrand
Eliza
Einführung in das Forschungsfeld der Kritikalitätsanalysen. Anhand der Rohstoffe Tantal, Wolfram, Zinn und Gold werden exemplarisch die quantitativen und qualitativen Indikatoren für eine Versorgungsengpassanalyse vorgestellt.
12/28/19
Science
Ada
Mit 4G wurde gegenüber früheren Mobilfunktechnologien das Air-Interface komplett neu gestaltet. Mit 5G wird dieses nun auf mögliche Zukunftstechnologien erweitert. Wir stellen die Neuerungen und die Möglichkeiten auf dem 5G-Air-Interface und im Core-Netz gegenüber 4G vor.
12/28/19
Science
Caroline
Eliza
Did you ever wonder what happens in the time period it takes light to cross the diameter of your hair? This is the femtosecond, a millionth of a billionth of a second. It is the time scale of electron and nuclear motion, and therefore the most fundamental processes in atomic and molecular physics, chemistry and biology start here. In order to take movies with femtosecond time resolution, we need ultrafast cameras – flashes of light that act faster than any camera shutter ever could. And ...