Session
Fahrplan - Hauptprogramm 36C3
Science

An ultrashort history of ultrafast imaging

Featuring the shortest movies and the largest lasers
Eliza
Caroline
Did you ever wonder what happens in the time period it takes light to cross the diameter of your hair? This is the femtosecond, a millionth of a billionth of a second. It is the time scale of electron and nuclear motion, and therefore the most fundamental processes in atomic and molecular physics, chemistry and biology start here. In order to take movies with femtosecond time resolution, we need ultrafast cameras – flashes of light that act faster than any camera shutter ever could. And imaging ultrafast motion is only the first step: We aim to control dynamics on the femtosecond time scale, ultimately driving chemical reactions with light.

Investigating ultrafast processes is challenging. There simply are no cameras that would be fast enough to image a molecule in motion, so we need to rely on indirect measurements, for example by ultrashort light pulses. Such ultrashort pulses have been developed for several years and are widely applied in the study of ultrafast processes by, e.g., spectroscopy and diffraction. Depending on the specific needs of the investigation, they can be generated either in the laboratory or at the most powerful light sources that exist today, the x-ray free-electron lasers.

With ultrafast movies, a second idea comes into play: once we understand the dynamics of matter on the femtosecond time scale, we can use this knowledge to control ultrafast motion with tailored light pulses. This is promising as a means to trigger reactions that are otherwise not accessible.

In my talk, I will give a brief introduction to the rapidly developing field of ultrafast science. I will summarize main findings, imaging techniques and the generation of ultrashort pulses, both at lab-based light sources and large free-electron laser facilities. Finally, I will give an outlook on controlling ultrafast dynamics with light pulses, with the future goal of hacking chemical reactions.

Additional information

Type lecture
Language English

More sessions

12/27/19
Science
Sebastian Pischel
Clarke
Wir verlassen uns in unserem Alltag permanent auf die Verfügbarkeit von elektrischer Energie. Aber wenn wir vom dauerhaften Betrieb von Kraftwerke, die fossile Energieträger verbrennen, wie stellen wir die Versorgung sicher, wenn nachts kein Wind weht? Elektrolyse oder Pumpspeicherkraftwerk? Superkondensatoren oder mechanische Speicher? Was geht heute überhaupt schon? Ähnlich unklar ist die Zukunft der Mobilität, wenn Verbrennungsmotoren von unseren Straßen verschwinden sollen. ...
12/27/19
Science
Clarke
The Large Hadron Collider (LHC) is the biggest particle accelerator on Earth. It was built to study matter in more detail than ever before and prove physical theories like the Standard Model of Particle Physics. This talk will focus on the engineering aspects of LHC. How was it built? What makes it tick? Which technologies are needed to create a such powerful machine? This talk will take you on a journey to explore how the most complex machine ever built by humans works.
12/27/19
Science
karlabyrinth
Dijkstra
When climate activists say you should listen to the science they usually refer to reports by the Intergovernmental Panel on Climate Change (IPCC). The IPCC is an Intergovernmental organization (IGO) providing an objective summary of scienctific results regarding climate change, its impacts and its reasons. The simulation of future climate is one fundamental pillar within climate research. But what is behind it? How does the science sector look like? How do we gain these insights, what does it ...
12/27/19
Science
Dijkstra
Making climate predictions is extremely difficult because climate models cannot simulate every cloud particle in the atmosphere and every wave in the ocean, and the model has no idea what humans will do in the future. I will discuss how we are using the Julia programming language and GPUs in our attempt to build a fast and user-friendly climate model, and improve the accuracy of climate predictions by learning the small-scale physics from observations.
12/27/19
Science
Bernhard Stoevesandt
Dijkstra
This talk is to show the current state of the discussion on climate change and the necessary and possible changes from a scientific perpesctive. It is to give some typical relevant answers and to foster the resiliance against climate sceptic questioning. This is one of the main tasks the scientist for future are trying to tackle.
12/27/19
Science
Martin Hillenbrand
Eliza
Einführung in das Forschungsfeld der Kritikalitätsanalysen. Anhand der Rohstoffe Tantal, Wolfram, Zinn und Gold werden exemplarisch die quantitativen und qualitativen Indikatoren für eine Versorgungsengpassanalyse vorgestellt.
12/28/19
Science
Ada
Mit 4G wurde gegenüber früheren Mobilfunktechnologien das Air-Interface komplett neu gestaltet. Mit 5G wird dieses nun auf mögliche Zukunftstechnologien erweitert. Wir stellen die Neuerungen und die Möglichkeiten auf dem 5G-Air-Interface und im Core-Netz gegenüber 4G vor.