Security

(Post-Quantum) Isogeny Cryptography

Eliza
naehrwert
There are countless post-quantum buzzwords to list: lattices, codes, multivariate polynomial systems, supersingular elliptic curve isogenies. We cannot possibly explain in one hour what each of those mean, but we will do our best to give the audience an idea about why elliptic curves and isogenies are awesome for building strong cryptosystems.
It is the year 2019 and apparently quantum supremacy is finally upon us [1,2]. Surely, classical cryptography is broken? How are we going to protect our personal communication from eagerly snooping governments now? And more importantly, who will make sure my online banking stays secure? The obvious sarcasm aside, we should strive for secure post-quantum cryptography in case push comes to shove. Post-quantum cryptography is currently divided into several factions. On the one side there are the lattice- and code-based system loyalists. Other groups hope that multivariate polynomials will be the answer to all of our prayers. And finally, somewhere over there we have elliptic curve isogeny cryptography. Unfortunately, these fancy terms "supersingular", "elliptic curve", "isogeny" are bound to sound magical to the untrained ear. Our goal is to shed some light on this proposed type of post-quantum cryptography and bring basic understanding of these mythical isogenies to the masses. We will explain how elliptic curve isogenies work and how to build secure key exchange and signature algorithms from them. We aim for our explanations to be understandable by a broad audience without previous knowledge of the subject. [1] https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002/ [2] https://www.nature.com/articles/d41586-019-02936-3

Additional information

Type lecture
Language English

More sessions

12/27/19
Security
Borg
Nowadays, Windows is still the most popular OS used in the world. It's very important for red teams / attackers to maintain the authority after they get into the OS by penetration test. So they need a vulnerability to hide in windows to escalate their account to system privilege.
12/27/19
Security
Hannes Mehnert
Dijkstra
Is the way we run services these days sustainable? The trusted computing base -- the lines of code where, if a flaw is discovered, jeopardizes the security and integrity of the entire service -- is enormous. Using orchestration systems that contain millions of lines of code, and that execute shell code, does not decrease this. This talk will present an alternative, minimalist approach to secure network services - relying on OCaml, a programming language that guarantees memory safety - composing ...
12/27/19
Security
littlelailo
Eliza
This talk is about running unsigned code at boot on iOS 11. I will demonstrate how you can start out with a daemon config file and end up with kernel code execution.
12/27/19
Security
Will Scott
Ada
It is easier to chat online securely today than it ever has been. Widespread adoption of signal, wire, and the private mode of WhatsApp have led a broader recognition of the importance of end-to-end encryption. There's still plenty of work to be done in finding new designs that balance privacy and usability in online communication.
12/27/19
Security
nba::yoh
Dijkstra
The 3DS is reaching end of life but has not revealed all its weaknesses yet. This talk will go through the process of reverse engineering an undocumented communication protocol and show how assessing hard-to-reach features yields dangerous results, including remote code execution exploits!
12/27/19
Security
Samuel Groß
Ada
So called “0-click” exploits, in which no user interaction is required to compromise a mobile device, have become a highly interesting topic for security researchers, and not just because Apple announced a one million dollar bug bounty for such exploits against the iPhone this year. This talk will go into the details of how a single memory corruption vulnerability in iMessage was remotely exploited to compromise an iPhone. The insights gained from the exploitation process will hopefully help ...
12/27/19
Security
Ada
Herzstück der digitalen Gesundheitsversorgung für 73 Millionen Versicherte ist die hochsichere, kritische Telematik-Infrastruktur mit bereits 115.000 angeschlossenen Arztpraxen. Nur berechtigte Teilnehmer haben über dieses geschlossene Netz Zugang zu unseren medizinischen Daten. Ein "Höchstmaß an Schutz" also, wie es das Gesundheitsministerium behauptet? Bewaffnet mit 10.000 Seiten Spezifikation und einem Faxgerät lassen wir Illusionen platzen und stellen fest: Technik allein ist auch ...