Hardware-Aided Trusted Computing

Secure boot, TEEs, different OSes and more

Making sense of the trusted computing landscape in Eclipse Oniro embedded distribution
D.trusted-hardware
Marta Rybczynska
<p>In this talk Marta is going to present a map of the trusted computing landscape, explaining different types hardware support. She is going to put it in a context of implementing secure boot and trusted execution in an embedded distribution, namely Yocto-based Eclipse Oniro project.</p>
The trusted computing landscape could be hard to understand for newcomers. Just at the beginning, they encounter a number of abbreviations like TEE, OPTEE, SEV, TF-A, TF-M and many more. In this talk Marta is going to present a map of those technologies, illustrate how they are (or are expected to) be used, which market needs they address. She will show how they could be implemented in practice in an embedded distribution. The example will be the secure boot work in the Eclipse Oniro project, an embedded multi-OS distribution for Internet of Things (IOT) devices. The multi-OS specificity of Oniro will be used how the trusted computing technologies compare on different types of processors running Linux and Zephyr, with different security hardware support.

Additional information

Type devroom

More sessions

2/5/22
Hardware-Aided Trusted Computing
D.trusted-hardware
<p>A brief introduction to the room and to the sessions.</p>
2/5/22
Hardware-Aided Trusted Computing
Shunda Zhang
D.trusted-hardware
<p>Intel SGX provided a mechanism to better isolate user-level software from attackers. However, attackers will still use various methods to attack SGX and user’s Enclaves. And user’s code inside Enclave may also have bugs, which can be leveraged by the attackers. We are from intel SGX SDK team, we have conducted security analysis and pen-test for SGX Enclave (based on SGX SDK) during the past 10+ years. We want to summarize some past exploits we encountered in our daily work and what's the ...
2/5/22
Hardware-Aided Trusted Computing
Dmitrii Kuvaiskii
D.trusted-hardware
<p>Gramine (formerly called "Graphene") is a lightweight library OS, designed to run a single Linux application in an isolated environment. Currently, Gramine runs on Linux and Intel SGX enclaves on Linux platforms. With Intel SGX support, Gramine can secure a critical application in a hardware-encrypted memory region and protect the application from a malicious system stack with minimal porting effort ("lift and shift" approach).</p> <p>Several major events happened to the Gramine project in ...
2/5/22
Hardware-Aided Trusted Computing
Nick Vidal
D.trusted-hardware
<p>The Enarx project reached a huge milestone: its first official release, featuring WebAssembly runtime. WebAssembly and Confidential Computing are a great match because WebAssembly offers developers a wide range of language choices, it works across silicon architectures, and it provides a sandboxed environment. This presentation will highlight the benefits of WebAssembly to Confidential Computing and showcase some demos.</p>
2/5/22
Hardware-Aided Trusted Computing
Fritz Alder
D.trusted-hardware
<p>Short break.</p>
2/5/22
Hardware-Aided Trusted Computing
Guilhem Bryant
D.trusted-hardware
<p>Veracruz is a framework for designing and deploying privacy-preserving computations amongst a group of mutually mistrusting individuals. Veracruz uses strong isolation technologies, such as AWS Nitro Enclaves, Arm CCA Realms, and the high-assurance seL4 hypervisor, to provide a safe, neutral ground, within which a sandboxed WebAssembly program executes. Recent enhancements to Veracruz have made it possible to support larger, more complex privacy-preserving computations: we have adopted the ...
2/5/22
Hardware-Aided Trusted Computing
D.trusted-hardware
<p>The confidentiality and integrity guarantees offered by Intel SGX enclaves can be easily thwarted if the enclave has not been properly designed. Its interface with the untrusted software stack is a perhaps the largest attack surface that adversaries can exploit; unintended interactions with untrusted code can expose the enclave to memory corruption attacks, for instance.</p> <p>We have proposed a notion, called orderliness, that embodies good practice set out by academic papers and the ...